Thermal and Ignition Barrier Requirements for SPF Sorting through the Confusion

Paul Duffy, M.A.Sc., P.Eng.
Vice President, Engineering
Icynene Inc.
Note:

Portions of this presentation are extracted from SPFA’s AIA Presentation

Used with permission of Rick Duncan
Technical Director
Spray Polyurethane Foam Alliance
Objectives

• Why Do Codes Require Thermal or Ignition Barriers?
• Fire Testing Basics
• What is a Thermal Barrier? Where is it required?
• What is an Ignition Barrier? Where is it required?
• Why is there confusion?
• How can you protect yourself?
Why Do Codes Require Ignition and Thermal Barriers?

- SPF, like most organic materials, is combustible
 - Unprotected SPF will ignite when exposed to fire
 - Smoke and combustible gases can accumulate in interior spaces during fire conditions and lead to flashover
 - Flame retardants added to slow flame spread
 - Flame spread measured under controlled conditions (ASTM E84), not representative of actual fire conditions
Why Do Codes Require Ignition and Thermal Barriers?

• Required by ICC Model Building Codes (I-codes)
 – Delays combustion and ignition of SPF
 – Provide extra time needed for worker and occupant egress
 – Requirements for Foam Plastics
 • IBC Chapter 26, Section 2603
 • IRC Chapter 3, Section R316
Fire Testing Basics

• Three categories
 • Surface Burning Characteristics (materials)
 • Room Tests (assemblies)
 • Structural Integrity Tests

• Testing standards from...
 • American Society for Testing of Materials (ASTM)
 • Underwriters Laboratories (UL)
 • National Fire Protection Association (NFPA)
 • Factory Mutual (FM)
Fire Testing Basics: Surface Burning

• ASTM E84 (UL 723) Tunnel Test
 • 25’ x 2’ x 2’ Steiner tunnel
 • Req’d for most interior building products
 • Material suspended on tunnel ceiling and ignited by gas burner at one end
 • Speed of flame front → Flame Spread Index (FSI)
 • Optical smoke density at outlet → Smoke Developed Index (SDI)
 • FSI/SDI baseline:
 • 0/0 for fiber-cement
 • 100/100 for red oak
 • 4” material thickness limitation
Fire Testing Basics: Surface Burning

• ASTM E84 (UL 723) Tunnel Test
 • 25’ x 2’ x 2’ Stiener tunnel
 • Req’d for most interior building products
 • Material suspended on tunnel ceiling and ignited by gas burner at one end
 • Speed of flame front → Flame Spread Index (FSI)
 • Optical smoke density at outlet → Smoke Developed Index (SDI)
 • FSI/SDI baseline: 0/0 for fiber-cement,

Surface Burning Test results are for comparative purposes only and not related to real-world fire conditions
Fire Testing Basics: Surface Burning

• Requirements for Foam Plastics (<4”) [IBC 2603.3 / IRC R316.3]
 • Class B is a mandatory requirement
 • FSI ≤ 75 and SDI ≤ 450
 • Class A is an optional requirement (achieved by most SPF insulations) that may be mandatory in certain applications
 • FSI ≤ 25 and SDI ≤ 450
 • Different requirement on low-slope roofs
 • FSI ≤ 75 but no limit on SDI
 • Roof assembly must pass FM4450 or UL1256
Fire Testing Basics: Surface Burning

• Requirements for Foam Plastics (<4”) [IBC 2603.3 / IRC R316.3]
 • Class B is a **mandatory requirement**
 • FSI ≤ 75 and SDI ≤ 450
 • Class A is an **optional requirement** (achieved by most SPF insulations) that may be mandatory in certain applications
 • FSI ≤ 25 and SDI ≤ 450

• Different requirement on low-slope roofs

NOTE: Surface Burning Test limited to 4” material thickness. Additional testing required for foam plastics to be installed >4”
Fire Testing Basics: Surface Burning

• Requirements for Foam Plastics (>4”)
 • SPF greater than 4” thick to meet certain R-values
 • ASTM E84/UL 723 limited to 4” sample thickness
 • To qualify assemblies greater than 4” thick, special approval testing is permitted [IBC 2603.9 / IRC R316.6]

• Special approval testing is performed on assembly
 • Using one of four large-scale corner fire tests
 • ½” gypsum board between foam and fire source
 • Determines maximum foam thickness intended for use
Fire Testing Basics: Surface Burning

- ASTM E970 Critical Radiant Heat Flux Test Apparatus
 - 1m long test panel
 - Used to qualify combustible insulations on attic floor
 - Flame should not progress more than 1 m under minimum heat flux of 0.12 W/m² from suspended gas burner
 - No material thickness limitation
Fire Testing Basics: Room-Corner

• Room Corner Test Procedure
 • Room constructed using typical wall and ceiling assemblies
 • Controlled fire source placed in corner
 • Wood crib or gas burner
 • Fire source ignited and observations recorded
 • Heat Release Rate
 • Temperatures at Ceiling
 • Heat Flux
 • Target Ignition
 • Flame-Over
Fire Testing Basics: Room-Corner

Figure 2. Room-corner fire test geometry.
Fire Testing Basics: Room-Corner
Fire Testing Basics: Room-Corner
Fire Testing Basics: Room-Corner
What is a Thermal Barrier?

• Thermal Barrier Requirement [IBC 2603.4 / IRC R316.4]
 • Separate foam plastics from all interior spaces with approved 15-minute thermal barrier
What is a Thermal Barrier?

• Two recognized thermal barrier coverings
 • ½” gypsum board [IBC 2603.4 / IRC R316.4]
 • Prescriptive for walls and ceilings
 • >95% of thermal barrier applications
 • nominal ¾” (19/32”) plywood [IBC Table 721.6.2(1)]
 • Not prescriptive but generally accepted for floors

• Non-prescriptive (equivalent) Thermal Barriers must be approved by large-scale fire testing
What is a Thermal Barrier?

- **Approved Thermal Barriers** [IBC 2603.4 / IRC R316.4]
 1. **Prescriptive Thermal Barrier** is ½” gypsum wallboard
 2. **Equivalent Thermal Barrier** is a coating or covering that must pass two large-scale fire tests:
 - Average temperature rise of the unexposed surface less than 250°F (120C) after 15 minutes of fire exposure per ASTM E 119 or UL 263
 - Remain in place 15 minutes during specified large-scale fire tests such as NFPA 286, UL 1715, UL 1040 or FM 4880
 -- OR --
 - Comply with NFPA 275 (both test above)
What is a Thermal Barrier?

• Special Approval / Alternate Assemblies [IBC 2603.9 / IRC R316.6]

3. **Alternate Assemblies** (e.g. Exposed SPF or SPF with a protective covering) must:
 • Remain in place 15 minutes during specified large-scale fire tests such as NFPA 286, UL 1715, UL 1040 or FM 4880
 • Does not need to comply with requirements of IBC 2603.4.
 • Product-Specific Assemblies must be tested:
 • Thermal Barrier Brand A on Foam Brand B
 • Protective coverings may include cementious, fibrous and other proprietary products
What is a Thermal Barrier?

• **No thermal barrier required:**
 - Inside masonry or concrete walls [IBC 2603.4.1.1 / IRC R316.5.2]
 - **Cooler and freezer walls (< 400 SF floor space)*** [IBC 2603.4.1.2-3]
 - Laminated metal wall panels-one story [IBC 2603.4.1.4]
 - **Roofing assembly*** passing UL 1256 [IBC 2603.4.1.5 / IRC R316.5.2]
 - Entry doors [IBC 2603.4.1.7-8 / IRC R316.5.5]
 - Garage doors [IBC 2603.4.1.9 / IRC R316.5.6]
 - Siding backer board [IBC 2603.4.1.10 / IRC R316.5.7]

* SPF applications

* ICYNENE®
What is a Thermal Barrier?

- **No thermal barrier required:**
 - Sill Plates and Headers [IBC 2603.4.1.13 / IRC R316.5.11]
 - Limited to Type V construction
 - Max thickness 3.25”
 - Class A Foam (LD and MD)
What is a Thermal Barrier?

- **No thermal barrier required:**
 - Certain Attics and Crawl Spaces
 - Entry is made only for service of utilities
 - [IBC 2603.4.1.6]
 - Entry is made for repairs and maintenance
 - [IRC R316.5.3]
 - No storage
 - Thermal barrier required between attic/crawlspace and occupied space
 - **Ignition barrier** is required separating foam from certain attic/crawlspace
What is an Ignition Barrier?

- **Ignition Barrier** [IBC 2603.4.1.6 / IRC R316.5.3]
 - Fire protection requirements can be reduced from 15-minute thermal barrier to ignition barrier in limited-access spaces (certain attics and crawlspaces)
 - Six prescriptive ignition barriers include:
 - 1 ½” mineral fiber insulation
 - ¼” wood structural panels
 - ⅜” particleboard
 - ¼” hardboard
 - ⅜” gypsum board
 - corrosion-resistant steel having a base metal thickness of 0.016”
 - **Alternative Ignition Barrier Assemblies by Special Approval Testing**
What is an Ignition Barrier?

• Special Approval Tests for Alternative Ignition Barrier Assemblies
 [IBC 2603.9 / IRC R316.6]
 • Same four large-scale corner burn tests as thermal barrier
 • NPFA 286, UL1715, FM4880 or UL1040
 • Special end-use fire tests per AC-377
 • Equivalent performance to ¼” plywood
 • AC-377 Appendix X Test for SPF in crawlspaces and under roof decks
 in unvented attics since June 2009
 • ASTM E970 Radiant Heat Flux Test for SPF on attic floors since June 2011
Ignition Barrier Performance

PASS
with intumescent coating
[IB_pass.wmv]

FAIL
without intumescent coating
[IB_fail.wmv]

AC-377 Appendix X (modified NFPA286 Room Corner) Test for Ignition Barriers
Ignition Barrier Performance

PASS
with intumescent coating

FAIL
without intumescent coating

Even if building codes are not applicable in your jurisdiction or for a specific project, (e.g., retrofit insulation), **always** use the ignition barrier system recommended by the foam manufacturer.

AC-377 Appendix X (modified NFPA286 Room Corner) Test for Ignition Barriers
Fire Testing: Commercial Buildings

• **Additional requirements for SPF in Type I-IV Construction**
 [IBC 2603.5]

 – Labelling of product

 – Thermal barrier required

 – Class A per ASTM E84 (<25 FS, <450 SD)

 – NFPA 259 test data corresponding to SPF tested per NFPA 285

 – NFPA 286 test data showing no sustained flaming

 – NFPA 285 test data for each wall assembly

 – ASTM E119 or UL 263 required for fire-resistance rated wall assemblies
Inspection and Verification

- Alternative Fire Assembly Test Results
 - Test performed by accredited 3rd-party lab
 - Sometimes difficult to interpret

- Evaluation Report
 - Test performed by accredited 3rd-party lab
 - Test results independently evaluated
 - Report defines installation
 - Product identification
 - Maximum thickness for foam
 - Alternative ignition barrier assemblies (if any)
Inspection and Verification

• Evaluation Service Reports
 • Majority of SPF insulation products have current ESRs
 • Available from manufacturer or ICC-ES websites
 •Eliminates need for contractors and inspectors to interpret test data
 • Defines product-specific requirements for thermal and ignition barriers based on fire testing
Application Examples

Unvented Attic and Crawlspace

- SPF insulation under roof deck separated from attic space with approved ignition barrier.
 - Prescriptive or per AC-377 Appendix X.

- Limited access attic separated from interior space with approved 15-minute thermal barrier.

- SPF insulation in walls separated from interior space with approved 15-minute thermal barrier.

- Limited access crawlspace separated from interior space with approved 15-minute thermal barrier.

- SPF insulation on walls separated from crawl space with approved ignition barrier.

- Limited access unvented attic space (no storage).

- ¾" subfloor.

- ½" gypsum board walls and ceilings.

- Interior space.

- Limited access unvented crawlspace (no storage).

- ICYNENE®
Application Examples

Unvented Attic and Crawlspace – w/ Storage

- SPF insulation under roof deck separated from attic space with **approved 15-minute thermal barrier**
- **Approved 15-minute thermal barrier not required** (e.g., ceiling tile)
- SPF insulation in walls separated from interior space with **approved 15-minute thermal barrier**
- SPF insulation on walls separated from crawl space with **approved 15-minute thermal barrier**
Application Examples

Vented Attic and Unvented Crawlspace

- Limited-access vented attic space
 - SPF insulation on attic floor separated from attic space with approved ignition barrier prescriptive or per ASTM E970

- Interior space
 - ½" gypsum board walls and ceilings
 - SPF insulation in walls separated from interior space with approved 15-minute thermal barrier

- ¾" subfloor
 - Limited access crawlspace separated from interior space with approved 15-minute thermal barrier

- Limited access unvented crawlspace (no storage)
 - SPF insulation on walls separated from crawl space with approved ignition barrier

ICYNENE®
Application Examples

Finished Room Over Garage

No ignition or thermal barrier needed if space is inaccessible (a.k.a. concealed)

All SPF insulation separated from interior space with approved 15-minute thermal barrier

¼" gypsum board walls and ceilings
Application Examples

Space Under Low-Slope Roof: Tile Ceiling

- **SPF insulation under roof deck separated from air space with approved 15-minute thermal barrier**
- **If air space is used as an air return plenum, SPF must be covered with a 25 FSI / 50 SDI layer in addition to thermal barrier**
- SPF insulation in walls and ceiling separated from interior space with approved 15-minute thermal barrier

dead air space

suspended tile ceiling

interior space

½” gypsum board walls

ICYNENE®
Application Examples

Space Under Low-Slope Roof: Gyp Board Ceiling

SPF insulation under roof deck separated from dead air space with **approved ignition barrier**

* If air space is used as an air return plenum, SPF must be covered with a 25 FSI / 50 SDI layer in place of ignition barrier

SPF insulation in walls and ceiling separated from interior space with **approved 15-minute thermal barrier**
Those are the basic requirements as they stand today.

Why is there confusion?
Yet there is confusion with…
– Designers
– Builders
– Contractors
…Even with Codes Officials!
1. Evolution of Requirements

- **Up to 2009**

- **Ignition Barriers:** SWRI 99-02 test used to qualify specific foams and ignition barriers

- **Thermal Barriers:** qualified with NFPA 286 and ASTM E119 (per IRC Sentence R-316.4) giving a “General Approval” for use over all foams.
1. Evolution of Requirements

- **beginning 2010**

- **Ignition Barriers:** AC-377 Appendix A and Appendix X tests used to qualify specific foams/ignition barriers

- **Thermal Barriers** qualified with NFPA 286 only (per IRC Sentence R-316.6) giving a “Specific Approval” over the foams they were tested with.
1. Evolution of Requirements

- beginning 2011

- Ignition Barriers: AC-377 Appendix X tests only used to qualify specific foams/ignition barriers. ASTM E970 used for insulation on attic floors.

- Thermal Barriers qualified with NFPA 286 only (per IRC Sentence R-316.6) giving a “Specific Approval” over the foams they were tested with.
Impact on Contractors and Manufacturers

- **Up to 2009**

- **Ignition Barriers:** Inconsistency in Fire Testing. Most foams could pass some test uncovered.

- **Thermal Barriers:** typically “thick” systems used (e.g. gypsum, cementitious, fibrous spray products.)
Impact on Contractors Manufacturers

• **Beginning 2010**

• **Ignition Barriers:** First foams to pass Appendix X uncovered are MD foams. LD foams require covering on overhead and vertical surfaces vertically in attics.

• **Thermal Barriers:** First intumescent paints gain “specific approval” as Thermal Barriers over foam.
Impact on Contractors and Manufacturers

- **Beginning 2011**
 - **Ignition Barriers**: Most MD foams to pass Appendix X uncovered. LD foams require covering on all roof surfaces not attic floors.
 - **Thermal Barriers**: Many intumescent paints gain “specific approval” as Thermal Barriers over foam.
2. Evolution of Codes and Other Requirements

• **Higher levels of performance:**
 – Insulation
 – Air tightness

• **Greater adoption of Unvented Attic designs:**
 – Less air and duct leakage
 – Less ductwork outside the building envelope

More people are interested in using spray foam who have less experience.
3. More Competition

• Economic Pressure:
 – Less new construction
 – Price cutting on jobs that remain

• Competing Technology:
 – Spray air barrier

Competitors are actually creating some of the confusion.
4. Product Evolution

- New “all-in-one” products that do not require coatings
 - Difficult to duplicate the performance of conventional products
- New coatings that can be applied at minimal thickness to minimize cost
 - Reduce application cost
- Attempts to maximize the thicknesses of spray foam that can be used in assemblies
 - Provide more options for spray foam contractors

It is difficult to differentiate “marketing hype” from legitimate innovations.
Specific Approvals

Approval of Specific Products only:
Specific spray foam
Specific coating

Spray Foam
Approved to a Maximum thickness tested.

IB or TB Coating
Approved to the minimum thickness tested.

STICK TO WHAT IS LISTED IN THE ESR!

ICYNENE®
Final Thoughts

• **Thermal Barriers**
 • All SPF requires thermal barrier between foam and all interior spaces
 • **NEVER** Substitute an Ignition Barrier for a Thermal Barrier—an Ignition Barrier does not provide adequate protection and in the event of a fire **YOU COULD BE LIABLE.**
Final Thoughts

• Thermal Barriers vs. Ignition Barriers
 • Are you missing a selling opportunity?
 • Ignition Barriers cannot be used to protect foam plastics in attics used for storage and other occupancy activities.
 • By selling a Thermal Barrier as an option, you provide the opportunity for your customer to convert an attic into useful, conditioned storage or work space.
 • By selling an option you can identify your client’s price sensitivity and turn a cost item into potential profit!
Thank You!

Questions?

SPFA Website: www.sprayfoam.org