Effects of Temperature and Air Infiltration and on Thermal Performance of Insulation and Insulated Frame Wall Assemblies

RICHARD S. DUNCAN, Ph.D., P.E. ROGER MORRISON, P.E., RRC

With funding from...

Honeywell

SPFA

American Chemistry Council

NOTICE: All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty or responsibility of any kind, express or implied. Statements or suggestions concerning possible use of products are made without representation or warranty that any such use is free of patent infringement, and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated herein, or that other measures may not be required. The values presented herein are typical values and are not to be interpreted as product specifications. User assumes all liability for use of the information and results obtained.

March 16-17, Hilton Torrey Pines, San Diego, CA
OVERVIEW

• BACKGROUND
 – Physics of Heat Transfer
 – Material Thermal Performance
 – Building Envelope System Thermal Performance

• TEST METHOD
 – System Thermal Performance
 – Guarded Hot Box Apparatus
 – Wall Specimens

• TEST RESULTS
 – Data Table
 – Effects of Air Leakage
 – Effects of Exterior Temperature

• CONCLUSIONS
• NEXT STEPS
• ACKNOWLEDGEMENTS
Conduction: through a solid material

\[Q = \frac{kA}{t} (T_{\text{hot}} - T_{\text{cold}}) \]
BACKGROUND: Physics of Heat Transfer

- **Conduction:** through a solid material
 \[Q = \frac{kA}{t} (T_{hot} - T_{cold}) \]

- **Convection:** movement of gas or liquid
 \[Q = hA(T_{hot} - T_{cold}) \]
 \[Q = mc_p(T_{hot} - T_{cold}) \]
BACKGROUND: Physics of Heat Transfer

- **Conduction:** through a solid material
 \[Q = \frac{kA}{t}(T_{hot} - T_{cold}) \]

- **Convection:** movement of gas or liquid
 \[Q = hA(T_{hot} - T_{cold}) \]
 \[Q = mc_p(T_{hot} - T_{cold}) \]

- **Radiation:** transmission of light waves
 \[Q = c\sigma(T_{hot}^4 - T_{cold}^4) \]
BACKGROUND: Physics of Heat Transfer

- **Conduction**: through a solid material
 \[Q = \frac{kA}{t}(T_{\text{hot}} - T_{\text{cold}}) = \frac{A}{R}(T_{\text{hot}} - T_{\text{cold}}) \]

- **Convection**: movement of gas or liquid
 \[Q = hA(T_{\text{hot}} - T_{\text{cold}}) \]
 R-value or thermal resistance, is a material’s ability to resist heat flow

- **Radiation**: transmission of light waves
 \[Q = c\sigma(T_{\text{hot}}^4 - T_{\text{cold}}^4) \]

March 16-17, Hilton Torrey Pines, San Diego, CA
BACKGROUND: Material Thermal Performance

- R-value laboratory measurement
 - Guarded hot plate (ASTM C177)
 - Heat flow meter (ASTM C518)

\[Q = \frac{kA}{t} (T_{hot} - T_{cold}) = \frac{A}{R} (T_{hot} - T_{cold}) \]

- Both methods minimize heat flow by convection and radiation

- Performed at prescribed mean temperature and temperature difference
 - Mean = \(\frac{1}{2}(T_{hot} + T_{cold}) \), usually 75°F
 - Range = \(T_{hot} - T_{cold} \), usually 40°F

Source: LaserComp, Inc. (www.lasercomp.com)
Current Thermal Testing Standards

<table>
<thead>
<tr>
<th>Insulation</th>
<th>ASTM Standard</th>
<th>Mean Test Temperature, °F</th>
<th>Temperature Differential, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-13 Fiberglass batt with paper facing</td>
<td>ASTM C 653</td>
<td>75</td>
<td>40 or 50</td>
</tr>
<tr>
<td>Extruded polystyrene</td>
<td>ASTM C 578</td>
<td>25, 40, 75, 110</td>
<td>Min 40</td>
</tr>
<tr>
<td>Polyisocyanurate</td>
<td>ASTM C 1289</td>
<td>40, 75, 110</td>
<td>Min 40</td>
</tr>
<tr>
<td>Closed cell spray foam insulation</td>
<td>ASTM C 1029</td>
<td>40, 75, 110</td>
<td>Min 40</td>
</tr>
<tr>
<td>Open cell spray foam insulation</td>
<td>None</td>
<td>75</td>
<td>Min 40</td>
</tr>
</tbody>
</table>

Real construction practices result in defects in the building envelope.

- Cracks
- Gaps
- Holes
BACKGROUND: Building Thermal Performance

- Real construction practices result in defects in the building envelope
- Improper material installation will compound the effects of these defects

Compression

Inset Stapling
• Real construction practices result in defects in the building envelope
• Improper material installation will compound the effects of these defects

Air Leakage + Improper Installation = Underperformance
Components of the building envelope (wall), including insulation, can transfer heat via all three modes.

Most accurate solution: in-situ energy measurements over 1+ years.

Whole-house solution is expensive.

Source: ENERGY STAR
TEST METHOD: System Thermal Performance

- Laboratory measurement of wall section is a suitable compromise
 - Guarded hot box (ASTM C1363)

\[Q_w = U_w A (T_{hot} - T_{cold}) = \frac{A}{R_w} (T_{hot} - T_{cold}) \]

- Real wall section = system of components
- All three modes of heat transfer
- Environmental effects
 - perforations/defects
 - air leakage
 - fenestration
 - moisture movement
 - wall orientation

Source: Architectural Testing, Inc. (www.archtest.com)
TEST METHOD: Guarded Hot Box Apparatus
TEST METHOD: Guarded Hot Box Apparatus

\[Q = U_w A (T_{w-hot} - T_{w-cold}) = \frac{A}{R_w} (T_{w-hot} - T_{w-cold}) \]

- \(Q \) measured by metering chamber
- \(T_{w-hot}, T_{w-cold} \) measured by thermocouples
- \(U_w, R_w \) calculated above

\[WPI = \frac{R_w^*}{R_w} \times 100 \]

- \(R_w^* \) expected wall R-value, calculated from measured material R-values
- \(R_w \) determined experimentally

March 16-17, Hilton Torrey Pines, San Diego, CA
How are the leakage ports sized?

- 0.5" paper-faced gypsum board
- 0.5" oriented strand board (OSB) sheathing or PIR insulated sheathing
- 0.125" dia. intentional leakage ports through OSB sheathing only (49 total)
TEST METHOD: Wall Specimens

March 16-17, Hilton Torrey Pines, San Diego, CA
TEST RESULTS: Experimental Data

<table>
<thead>
<tr>
<th>Wall</th>
<th>Sheathing</th>
<th>Cavity Insulation</th>
<th>Rins</th>
<th>Warm room temp (F)</th>
<th>Cold room temp (F)</th>
<th>Wind Speed (mph)</th>
<th>Cold room air press (psl)</th>
<th>Metering chamber air flow (CFM)</th>
<th>Uw</th>
<th>Rw</th>
<th>R’w</th>
<th>WPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5" OSR</td>
<td>Fiberglass Batts 2006</td>
<td>13</td>
<td>70</td>
<td>70</td>
<td>0</td>
<td>0.013</td>
<td>0.00</td>
<td>0.013</td>
<td>0.081</td>
<td>12.28</td>
<td>11.66</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.5" OSR</td>
<td>Open-Cell SPF</td>
<td>12.1</td>
<td>70</td>
<td>70</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.094</td>
<td>10.60</td>
<td>11.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>February 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>66379.02-116-46</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.5 polyiso board</td>
<td>Closed-Cell SPF</td>
<td>10.5</td>
<td>70</td>
<td>70</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.090</td>
<td>11.17</td>
<td>10.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>October 2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATI Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>66379.01-116-46-R0</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.5 polyiso board</td>
<td>Closed-Cell SPF</td>
<td>10.5</td>
<td>70</td>
<td>70</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.090</td>
<td>11.17</td>
<td>10.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>August 2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATI Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>66614.01-116-46</td>
<td></td>
</tr>
</tbody>
</table>

Four wall constructions: All 2”x4”-16oc. Three with OSB, one with R3 PIR sheathing

Three cavity insulations: R13 kraft-faced fiberglass, open-cell SPF, closed-cell SPF

March 16-17, Hilton Torrey Pines, San Diego, CA
TEST RESULTS: Experimental Data

Nominal R-value of cavity insulations based on label or extrapolation.

Open cell sprayed at ~3.25” to minimize waste, less than R13

Closed-cell sprayed at 1.5”, intentionally not R13 to show equivalent performance

<table>
<thead>
<tr>
<th>Wall</th>
<th>Sheathing</th>
<th>Cavity Insulation</th>
<th>Rins</th>
<th>Warm Room temp (F)</th>
<th>Cold Room temp (F)</th>
<th>Wind Speed (mph)</th>
<th>Cold Room air press (psf)</th>
<th>Metering Chamber air flow (CFM)</th>
<th>Uw</th>
<th>Rw</th>
<th>R’w</th>
<th>WPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>Fiberglass Batts 2005</td>
<td>13.0</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.013</td>
<td>0.00</td>
<td>0.081</td>
<td>12.28</td>
<td>11.66</td>
<td>105.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.126</td>
<td>1.85</td>
<td>0.110</td>
<td>9.08</td>
<td></td>
<td>77.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>25</td>
<td>15</td>
<td>0.115</td>
<td>1.71</td>
<td>0.106</td>
<td>9.63</td>
<td></td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
<td>70</td>
<td>15</td>
<td>3.088</td>
<td>2.10</td>
<td>0.121</td>
<td>8.25</td>
<td></td>
<td>70.8</td>
</tr>
<tr>
<td>R</td>
<td>0.5” OSR</td>
<td>Open-Cell SPF February 2007</td>
<td>12.1</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.094</td>
<td>10.60</td>
<td>11.11</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.127</td>
<td>0.34</td>
<td>0.100</td>
<td>10.00</td>
<td></td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>25</td>
<td>15</td>
<td>0.115</td>
<td>0.34</td>
<td>0.098</td>
<td>10.19</td>
<td></td>
<td>91.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
<td>70</td>
<td>15</td>
<td>3.088</td>
<td>2.10</td>
<td>0.111</td>
<td>9.02</td>
<td></td>
<td>81.2</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Closed-Cell SPF October 2006</td>
<td>10.5</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.090</td>
<td>11.17</td>
<td>10.14</td>
<td>110.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.109</td>
<td>0.27</td>
<td>0.095</td>
<td>10.55</td>
<td></td>
<td>104.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>25</td>
<td>15</td>
<td>0.101</td>
<td>0.21</td>
<td>0.092</td>
<td>10.91</td>
<td></td>
<td>107.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
<td>70</td>
<td>15</td>
<td>3.088</td>
<td>0.18</td>
<td>0.100</td>
<td>9.88</td>
<td></td>
<td>98.5</td>
</tr>
<tr>
<td>D</td>
<td>0.5 polyiso board</td>
<td>Closed-Cell SPF August 2006</td>
<td>10.5</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.046</td>
<td>0.00</td>
<td>0.071</td>
<td>14.09</td>
<td>12.74</td>
<td>110.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.125</td>
<td>0.63</td>
<td>0.097</td>
<td>11.54</td>
<td></td>
<td>99.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>25</td>
<td>15</td>
<td>0.114</td>
<td>0.36</td>
<td>0.079</td>
<td>12.70</td>
<td></td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
<td>70</td>
<td>15</td>
<td>3.088</td>
<td>0.62</td>
<td>0.094</td>
<td>10.64</td>
<td></td>
<td>83.5</td>
</tr>
</tbody>
</table>

March 16-17, Hilton Torrey Pines, San Diego, CA
TEST RESULTS: Experimental Data

<table>
<thead>
<tr>
<th>Wall</th>
<th>Sheathing</th>
<th>Cavity Insulation</th>
<th>Rins</th>
<th>Warm room temp (F)</th>
<th>Cold room temp (F)</th>
<th>Wind Speed (mph)</th>
<th>Cold room air press (psl)</th>
<th>Metering chamber airflow (CFM)</th>
<th>Uw</th>
<th>Rw</th>
<th>R’w</th>
<th>WPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fiberglass Batts 2005</td>
<td>13.0</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.013</td>
<td>0.00</td>
<td>0.001</td>
<td>12.28</td>
<td>11.66</td>
<td>105.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.126</td>
<td>1.65</td>
<td>0.119</td>
<td>9.08</td>
<td>77.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>25</td>
<td>15</td>
<td>0.115</td>
<td>1.71</td>
<td>0.106</td>
<td>9.53</td>
<td>81.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>70</td>
<td>15</td>
<td>0.099</td>
<td>2.10</td>
<td>0.121</td>
<td>8.25</td>
<td>70.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Open-Cell SPF February 2007 AII Report 66379.02-116-46</td>
<td>12.1</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.004</td>
<td>10.60</td>
<td>11.11</td>
<td>95.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.127</td>
<td>0.34</td>
<td>0.100</td>
<td>10.00</td>
<td>90.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.115</td>
<td>0.34</td>
<td>0.099</td>
<td>10.19</td>
<td>91.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>70</td>
<td>15</td>
<td>0.097</td>
<td>0.20</td>
<td>0.111</td>
<td>9.02</td>
<td>81.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Closed-Cell SPF October 2006 ATI Report 66379.01-116-46-R0</td>
<td>10.5</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.009</td>
<td>11.17</td>
<td>10.14</td>
<td>110.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.109</td>
<td>0.27</td>
<td>0.095</td>
<td>10.55</td>
<td>104.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>25</td>
<td>15</td>
<td>0.101</td>
<td>0.21</td>
<td>0.092</td>
<td>10.91</td>
<td>107.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>70</td>
<td>15</td>
<td>0.082</td>
<td>0.18</td>
<td>0.100</td>
<td>9.98</td>
<td>98.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.5 polyiso board Closed-Cell SPF August 2006 ATI Report 66614.01-116-46</td>
<td>10.5</td>
<td>U</td>
<td>25</td>
<td>U</td>
<td>U.046</td>
<td>U.00</td>
<td>U.007</td>
<td>14.09</td>
<td>12.74</td>
<td>110.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>-15</td>
<td>15</td>
<td>0.126</td>
<td>0.53</td>
<td>0.007</td>
<td>11.54</td>
<td>90.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>25</td>
<td>15</td>
<td>0.114</td>
<td>0.36</td>
<td>0.079</td>
<td>12.70</td>
<td>99.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>70</td>
<td>15</td>
<td>0.096</td>
<td>0.62</td>
<td>0.094</td>
<td>10.64</td>
<td>83.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real exterior conditions – avg. temp. *not* 75F, free convection, leakage induced:

1. Cold exterior (25°F), no wind
2. Cold exterior (25°F), simulated 15 mph wind
3. Extreme cold exterior (-15°F), simulated 15 mph wind
4. Extreme hot exterior (115°F), simulated 15 mph wind

March 16-17, Hilton Torrey Pines, San Diego, CA
Assembly Air Leakage

<table>
<thead>
<tr>
<th>Wall</th>
<th>Sheathing</th>
<th>Cavity Insulation</th>
<th>Rins</th>
<th>Warm room temp (F)</th>
<th>Cold room temp (F)</th>
<th>Wind Speed (mph)</th>
<th>Cold room air press (psf)</th>
<th>Metering chamber air flow (CFM)</th>
<th>Uw</th>
<th>Rw</th>
<th>R'w</th>
<th>WPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fiberglass Batt 2005</td>
<td></td>
<td>13.0</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.013</td>
<td>0.00</td>
<td>0.00</td>
<td>0.094</td>
<td>10.60</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Open-Cell SPF February 2007 All Report 66379.02-116-46</td>
<td></td>
<td>12.1</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.094</td>
<td>10.60</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Closed-Cell SPF October 2006 ATI Report 66379.01-116-46-RO</td>
<td></td>
<td>10.5</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.094</td>
<td>10.60</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.5 polyiso board Closed-Cell SPF August 2006 ATI Report 66614.01-116-46</td>
<td></td>
<td>10.5</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.013</td>
<td>0.00</td>
<td>0.00</td>
<td>0.094</td>
<td>10.60</td>
<td>95.4</td>
</tr>
</tbody>
</table>

Assembly air leakage measured under applied pressure difference (ASTM E283)
TEST RESULTS: Experimental Data

<table>
<thead>
<tr>
<th>Wall</th>
<th>Sheathing</th>
<th>Cavity Insulation</th>
<th>Rins</th>
<th>Warm room temp (°F)</th>
<th>Cold room temp (°F)</th>
<th>Wind Speed (mph)</th>
<th>Cold room air press (psig)</th>
<th>Metering chamber air flow (CFM)</th>
<th>Uw</th>
<th>Rw</th>
<th>R*w</th>
<th>WPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>FiberGlas Batts 2006</td>
<td>13.0</td>
<td>70</td>
<td>25</td>
<td>0</td>
<td>0.013</td>
<td>0.00</td>
<td>0.081</td>
<td>12.28</td>
<td>11.66</td>
<td>105.3</td>
</tr>
<tr>
<td>R</td>
<td>0.5" OSB</td>
<td>Open-Cell SPF February 2007 All Report</td>
<td>12.1</td>
<td>70</td>
<td>-16</td>
<td>15</td>
<td>0.127</td>
<td>0.34</td>
<td>0.094</td>
<td>10.60</td>
<td>11.11</td>
<td>95.4</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Closed-Cell SPF October 2006 All Report</td>
<td>10.5</td>
<td>70</td>
<td>-16</td>
<td>15</td>
<td>0.101</td>
<td>0.21</td>
<td>0.092</td>
<td>10.91</td>
<td>10.14</td>
<td>110.2</td>
</tr>
<tr>
<td>D</td>
<td>0.5 polyiso board</td>
<td>Closed-Cell SPF August 2006 All Report</td>
<td>10.5</td>
<td>70</td>
<td>-16</td>
<td>15</td>
<td>0.123</td>
<td>0.53</td>
<td>0.087</td>
<td>11.54</td>
<td>12.74</td>
<td>110.6</td>
</tr>
</tbody>
</table>

Rw: measured R-value for the wall
*R*w*: calculated R-value for the wall component properties (isothermal planes)
WPI: Wall Performance Index = (Rw / R*w) x 100

March 16-17, Hilton Torrey Pines, San Diego, CA
TEST RESULTS: Air Leakage Effect @ 25°F

Key Observations...

![Bar chart showing performance index for different types of cavity insulation under no wind and 15 mph wind conditions.]

- A: Fiberglass Batts
- B: Open-Cell SPF
- C: Closed-Cell SPF
- D: Closed-Cell SPF + PIR

Wall : Cavity Insulation

March 16-17, Hilton Torrey Pines, San Diego, CA
Key Observations…

- Without forced air leakage, fiberglass and closed-cell insulations appear to perform at or above expected performance.
TEST RESULTS: Air Leakage Effect @ 25ºF

Key Observations…

- Without forced air leakage, fiberglass and closed-cell insulations appear to perform at or above expected performance.
- Open-cell SPF is slightly below expected performance without wind due to extrapolation error.
Key Observations…

- Without forced air leakage, fiberglass and closed-cell insulations appear to perform at or above expected performance.

- Open-cell SPF is slightly below expected performance without wind due to **extrapolation error**.

- Presence of air leakage from a 15 mph wind significantly reduces thermal performance of fiberglass walls.
Key Observations…

- Without forced air leakage, fiberglass and closed-cell insulations appear to perform at or above expected performance performance.
- Open-cell SPF is slightly below expected performance without wind due to **extrapolation error**.
- Presence of air leakage from a 15 mph wind significantly reduces thermal performance of fiberglass walls.
- Much less reduction in performance observed for spray foam walls.

March 16-17, Hilton Torrey Pines, San Diego, CA
TEST RESULTS: Air Leakage vs. Ext. Temp.

Key Observations…

- A: Fiberglass Batts
- B: Open-Cell SPF
- C: Closed-Cell SPF
- D: Closed-cell SPF + PIR

March 16-17, Hilton Torrey Pines, San Diego, CA
Key Observations…

- The most air-permeable cavity insulation is fiberglass
Key Observations…

- The most air-permeable cavity insulation is fiberglass.
- Walls using spray foam have significantly less air leakage.
Key Observations…

- The most air-permeable cavity insulation is fiberglass.
- Walls using spray foam have significantly less air leakage.
- Closed-cell spray foam has the lowest leakage rate, about 10% that of fiberglass.
Key Observations…

- The most air-permeable cavity insulation is fiberglass.
- Walls using spray foam have significantly less air leakage.
- Closed-cell spray foam has the lowest leakage rate, about 10% that of fiberglass.
- Extreme hot/cold temperatures appear to increase leakage in fiberglass and ccSPF-polyiso walls.
Key Observations…

- As air leakage increases, thermal performance of all walls decrease
Key Observations…

- As air leakage increases, thermal performance of all walls decrease
- Effects of air leakage most significant in fiberglass walls
Key Observations…

- As air leakage increases, thermal performance of all walls decrease.
- Effects of air leakage most significant in fiberglass walls.
- Unexpected high leakage and lower performance observed for closed-cell SPF applied to polyiso board.
Key Observations…

- As air leakage increases, thermal performance of all walls decrease.
- Effects of air leakage most significant in fiberglass walls.
- Unexpected high leakage and lower performance observed for closed-cell SPF applied to polyiso board.
- Possible delamination or thermal shrinkage at extreme temperatures?
Key Observations…
Key Observations…

- In presence of 15 mph simulated wind, fiberglass wall performs at about 82% of rated performance, decreasing down to 72% at high outdoor temperatures.
Key Observations...

- In presence of 15 mph simulated wind, fiberglass wall performs at about 82% of rated performance, decreasing down to 72% at high outdoor temperatures.

- Closed-cell SPF applied to OSB sheathing performs consistently better than expected at all temperatures.
Key Observations...

- In presence of 15 mph simulated wind, fiberglass wall performs at about 82% of rated performance, decreasing down to 72% at high outdoor temperatures.
- Closed-cell SPF applied to OSB sheathing performs consistently better than expected at all temperatures.
- Cannot separate effects of mean temperature on material thermal conductivity (R-value) from effects of air leakage.
CONCLUSIONS

- Fiberglass and ccSPF walls perform as expected without wind load, while ocSPF wall performs slightly below expectations, possibly due to extrapolated R-value.

- SPF insulated walls exhibit nearly 10 times less air leakage than walls insulated with fiberglass insulation under a 15 mph simulated wind load.

- Thermal performance of all SPF walls not significantly affected by wind compared to fiberglass insulated walls.

- Extreme exterior temperatures increase air leakage and decrease thermal performance of all walls, possibly due to mismatched thermal expansion.

- Although it is known that insulation thermal conductivity is dependent on mean test temperature, it was not possible to delineate effects of air leakage and temperature-dependent thermal conductivities on the performance of the wall.
• More test data is needed. Data from this study are based on single specimen of each wall type.

• Testing at extreme temperatures, with and without a simulated wind load, is needed to delineate of air leakage and mean temperature effects on wall thermal performance.

• Need to determine if cracking, shrinkage or delamination occurs at extreme temperatures – durability of air barrier materials and systems are important.

• Thermal performance of walls is dependent on air leakage. Insulations installed to the same R-value with and without integral air barriers can perform differently under wind/pressure loads.
The authors of this paper would like to thank the **Spray Polyurethane Foam Alliance** and **American Chemistry Council - Center for the Polyurethanes Industry** for their management and support of this important research project.

Also, we would like to thank **Craig Drumheller of NAHB** and **Mike Toman of Architectural Testing, Inc.** for their technical insight regarding the guarded hot box test procedure.
Open-Cell SPF R-value per inch decreases with thickness

March 16-17, Hilton Torrey Pines, San Diego, CA
Open-cell insulation was ‘short-filled’ to an average thickness of 3.25”
Effective Air Leakage (orifice) Area

\[A_L = KQ_r \frac{\sqrt{\rho/2\Delta P_r}}{C_D} \]

where
- \(A_L \) = effective air leakage area, in\(^2\)
- \(Q_r \) = air flow rate, 4.8 cfm
- \(\rho \) = air density, 0.075 lbm/ft\(^3\)
- \(\Delta P_r \) = reference pressure difference, 0.3 in of water column
- \(C_D \) = discharge coefficient (assumed to be 0.6)
- \(K \) = unit conversion factor = 0.186
Equivalent Wind Velocity Pressure

\[p_v = \frac{\rho_a U^2}{2cg_c} \]

where
\(p_v \) = wind velocity pressure on the wall (inches of water)
\(Q_r \) = air flow rate, 4.8 cfm
\(\rho_a \) = air density in cold room, lbm/ft\(^3\)
\(U \) = wind velocity
\(g_c \) = gravitational constant, (32.2 ft/s\(^2\))
\(c \) = unit conversion factor = 0.414